![]() |
山東明基環保設備有限公司
主營產品: 一體化污水處理設備,氣浮機,加藥裝置,一體化提升泵站,壓濾機,厭氧反應器,二氧化氯發生器 |

聯系電話
15963635951
公司信息
- 聯系人:
- 張鵬
- 電話:
- 0536-8120588
- 手機:
- 15963635951
- 售后電話:
- 13002780588
- 傳真:
- 0536-8120588
- 地址:
- 山東省濰坊市奎文區幸福街316號1號樓3-410
- 郵編:
- 000000
- 網址:
- www.sdmjhb.com
參考價 | 面議 |
- 型號
- 品牌 明基環保
- 廠商性質 生產商
- 所在地 濰坊市
更新時間:2022-01-17 17:27:42瀏覽次數:142
聯系我們時請說明是環保在線上看到的信息,謝謝!
開平市UASB厭氧反應器
含纖維素的廢水厭氧處理為什么采用兩步法
氧物處理
利用氧微物(包括兼性微物)氧存條件進行物代謝降解機物使其穩定、害化處理微物利用水存機污染物底物進行氧代謝經系列化反應逐級釋放能量終低能位機物穩定達害化要求便返自環境或進步處理污水處理工程氧物處理性污泥物膜兩類 1、性污泥:SBR、A/O、A/A/O、氧化溝等 SBR序批式性污泥簡稱種按間歇曝式性污泥污水處理技術主要征序間歇操作SBR技術核SBR反應池該池集均化、初沉、物降解、二沉等功能于池污泥流系統尤其適用于間歇放流量變化較場合 A/O工藝前段缺氧段段氧段串聯起A段DO(溶解氧)于0.2mg/LO段DO=2~4mg/L缺氧段異養菌污水淀粉、纖維、碳水化合物等懸浮污染物溶性機物水解機酸使機物解機物溶性機物轉化溶性機物些經缺氧水解產物進入氧池進行氧處理提高污水化性提高氧效率;缺氧段異養菌蛋白質、脂肪等污染物進行氨化(機鏈N或氨基酸氨基)游離氨(NH3、NH4+)充足供氧條件自養菌硝化NH3-N(NH4+)氧化NO3-通流控制返至A池缺氧條件異氧菌反硝化NO3-原態氮(N2)完C、N、O態循環實現污水害化處理
A2/O工藝亦稱A-A-O工藝英文Anaerobic-Anoxic-Oxic字母簡稱(厭氧-缺氧-氧)按實質意義說本工藝應厭氧-缺氧-氧物脫氮除磷工藝簡稱氧化溝種性污泥處理系統其曝池呈封閉溝渠型所水力流態同于傳統性污泥種尾相連循環流曝溝渠稱循環曝池早氧化溝渠由鋼筋混凝土建加護坡處理土溝渠間歇進水間歇曝點說氧化溝早序批式處理污水技術
2、物膜:物濾池、物轉盤、物接觸氧化池等
曝物濾池集物氧化截留懸浮固體體新工藝物轉盤工藝物膜污水物處理技術種污水灌溉土處理工強化種處理使細菌菌類微物、原物類微型物物轉盤填料載體繁育形膜狀物性污泥物膜污水經沉淀池初級處理與物膜接觸物膜微物攝取污水機污染物作營養使污水凈化物轉盤微物代謝所需溶解氧通設物轉盤側曝管供給轉盤表面覆空罩曝管釋放壓縮空驅空罩使轉盤轉轉盤離污水轉盤表面形層薄薄水層水層空吸收溶解氧物接觸氧化種介于性污泥與物濾池間物膜工藝其點池內設置填料池底曝污水進行充氧并使池體內污水處于流狀態污水與污水填料充接觸避免物接觸氧化池存污水與填料接觸均缺陷
UASB反應器對各類廢水很大的適應性:
UASB反應器不僅可以出來高濃度機廢水,如酒精、糖蜜、檸檬酸等廢水,也可以出來中等濃度機廢水,如啤酒、屠宰、軟飲料等廢水,并且可以出來低濃度機廢水,如生活污水、城市污水等。UASB反應器可在高溫(55攝氏度)和中溫(35攝氏度左右)下,并可在低溫(20攝氏度左右)下穩定。除了含毒害物質的機廢水外,UASB反應器幾乎可適應不同行業出的各類機廢水。
能耗低,產泥量少:
由于UASB反應器不需要供氧,不需要攪拌,不需要加溫,在實現強效能的同時,達到了低能耗,并可提供大量的生物能沼,因此,UASB反應器是一種產能型的廢水處理設備。由于SRT很長,不僅產生的污泥時穩定的,而且產泥量很少,從而降低了污泥處理。
不能去除廢水中的氮和磷:
UASB反應器與其他厭氧處理設備一樣,其不足之處是不能去除廢水中的氮和磷。這是由厭氧生化反應的本質決定的。在處理高、中等濃度廢水時,采用厭氧-好氧串聯工藝,即用UASB反應器去除廢水中大部分含碳機物作為預處理,而采用好氧處理設備去除殘余的含碳機物和氮、磷等物質,這是廢水處理工藝,具很大的意義,并可以大大節省基建投資,降低。因而,著很好的效益和環境效益。
開平市UASB厭氧反應器
酸化的表現
先,我們來了解一下厭氧反應器酸化的四個現象:
- 反應器內pH值明顯下降
- 出水VFA突出上升
- COD去除效率大幅降低
- 沼產量持續減少
通常情況下,以上這些現象是同時發生的。一旦出現上述現象,請務必給予足夠的重視。
原因分析
厭氧反應器發生酸化的根源,是厭氧污泥中產甲烷菌的產甲烷能力不足以分解水解酸化菌所產出的機酸,同時pH值的下降會使未降解的VFA濃度上升,對產甲烷菌產生進一步的抑制,使反應器繼續酸化,形成惡性循環,終導致反應器酸化。
導致酸化的主要原因如下:
- 營養鹽缺乏
- pH條件或溫度條件不合適
- 由于負荷造成
- 廢水中混入了毒性物質
我們的公眾號曾經詳細過厭氧反應器發生酸化的原因,文章名稱為厭氧污泥酸化不可不知的4大原因。
處理措施
一旦發生厭氧反應器酸化,不論什么原因,都需要迅速扭轉這種趨勢,應當采取如下兩種應急措施。
1. 大幅降低負荷
- 盡量多降低負荷,可以降低至50%,甚至暫停處理廢水。
- 同時,若厭氧反應器設外循環管路,則通過循環泵打循環,直至VFA恢復正常。
2. 采取多種手段,避免出水PH值降低到正常范圍(6.5)以下
- 若厭氧反應器出水pH值降至6.5以下甚至更低,則須適當提高反應器進水的pH值,以維持反應器內合適的pH環境。(進水pH值提高的幅度視反應器內pH值下降的程度而定,時可以將進水的pH值調整至8.0以上甚至9.0以上。)
- 當反應器內的pH值降低到5.0以下,說明反應器酸化已經非常嚴重了。這時,可以用清水置換厭氧反應器內的廢水,將反應器內的VFA濃度迅速降低,同時盡快恢復反應器內正常的pH環境。
通過以上兩個措施,如果反應器酸化的原因僅僅是負荷,只要沒嚴重到致使厭氧污泥大量流失,在24小時至數天內,反應器中的VFA會下降到200mg/l以下,pH值會恢復至正常的水平。即使由于酸化程度過于嚴重或者由于其他原因導致反應器不能完恢復,也可以使酸化程度得到緩解,為后續查明原因并采取進一步的應對措施贏得時間。
當反應器的酸化被遏制后,可以進行低負荷,然后根據情況逐步增加負荷直至反應器的負荷和效率恢復到酸化前的正常水平。
正如我們在文章開頭提到的,厭氧污泥酸化是厭氧反應器中嚴重的事故之一。遇到此類問題,建議廣大站長和操作人員應保持冷靜,根據實際情況準確做出判斷,并立即采取正確措施,切不可“等等看”、“再挺一挺”等僥幸心理,從而錯過了解決問題時機。
厭氧物處理
厭氧物處理 (Anaerobic Process),利用兼性厭氧菌專性厭氧菌污水機物降解低化合物進轉化甲烷、二氧化碳機污水處理酸性消化堿性消化兩階段酸性消化階段由產酸菌泌外酶使機物變簡單機酸醇類、醛類氨、二氧化碳等;堿性消化階段酸性消化代謝產物甲烷細菌進步解甲烷、二氧化碳等構物體種處理主要用于高濃度機廢水糞便污水等處理高機物厭氧降解程四階段:水解階段、發酵(或酸化)階段、產乙酸階段產甲烷階段水解階段水解定義復雜非溶解性聚合物轉化簡單溶解性單體或二聚體程高機物相量巨能透細胞膜能細菌直接利用階段細菌胞外酶解例纖維素纖維素酶水解纖維二糖與葡萄糖淀粉解麥芽糖葡萄糖蛋白質蛋白質酶水解短肽與氨基酸等些水解產物能夠溶解于水并透細胞膜細菌所利用水解程通較緩慢認含高機物或懸浮物廢液厭氧降解限速階段種素溫度、機物組、水解產物濃度等能影響水解速度與水解程度發酵階段發酵定義機物化合物既作電受體電供體物降解程程溶解性機物轉化揮發性脂肪酸主末端產物程稱酸化階段述化合物發酵細菌(即酸化菌)細胞內轉化更簡單化合物并泌細胞外發酵細菌絕數嚴格厭氧菌通約1%兼性厭氧菌存于厭氧環境些兼性厭氧菌能夠起保護像甲烷菌嚴格厭氧菌免受氧損害與抑制階段主要產物揮發性脂肪酸、醇類、乳酸、二氧化碳、氫、氨、硫化氫等產物組取決于厭氧降解條件、底物種類參與酸化微物種群與同酸化菌利用部物質合新細胞物質未酸化廢水厭氧處理產更剩余污泥厭氧降解程酸化細菌酸耐受力必須加考慮酸化程pH降4能進行產甲烷程pH值降減少甲烷氫消耗并進步引起酸化末端產物組改變產乙酸階段產氫產乙酸菌階段產物進步轉化乙酸氫、碳酸及新細胞物質甲烷階段階段乙酸、氫、碳酸、甲酸甲醇轉化甲烷、二氧化碳新細胞物質甲烷細菌乙酸、乙酸鹽、二氧化碳氫等轉化甲烷程兩種理同產甲烷菌完組氫二氧化碳轉化甲烷另組乙酸或乙酸鹽脫羧產甲烷前者約占總量1/3者約占2/3甲烷形程主要間產物甲基輔酶M(CH3-S-CH2-SO3-)
需要指:些書厭氧消化程三階段、二階段合階段稱水解酸化階段則認四階段能更清楚反應厭氧消化程
述四階段反應速度依廢水性質異含纖維素、半纖維素、膠脂類等污染物主廢水水解易速度限制步驟;簡單糖類、淀粉、氨基酸般蛋白質均能微物迅速解含類機物廢水產甲烷易限速階段雖厭氧消化程四程厭氧反應器四階段同進行并保持某種程度態平衡該平衡旦pH值、溫度、機負荷等外加素所破壞則先使產甲烷階段受抑制其結導致低級脂肪酸積存厭氧進程異變化甚至導致整消化程停滯。
IC中易出現的問題及處理方法
a.緊急情況或IC罐維護停止進水
l 在2個小時以內時,重新啟動后以規定流量上水;
l 在2個小時以上24小時內,重新啟動時,開始進水流量為規定流量的50%進水,循序漸進慢慢加大流量至規定流量(按每半小時20m3增加流量)。
l 在24個小時以上,重新啟動時,開始進水流量為規定流量的 1/4進水,循序漸近慢慢加大流量至規定流量(按每半小時20m3加量)。
b.出水VFA突然增加
l 造成出水VFA高的原因較多,如短時間內突然增加,可能的原因是進水VFA增加較多造成的,可降低進水VFA,即減少廢糖水的酸化時間;
l 如果出水VFA出現不斷增長趨勢,則情況較為嚴重,應盡快降低負荷并及時向上級匯報,做好記錄,必要時應通知協助解決。
c.出水懸浮物或CODcr突然增加
l IC罐出水懸浮物、CODcr濃度會因進水濃度的波動而出現短時間內的波動,屬正常現象;
l 如果IC罐出水懸浮物、CODcr濃度持續增加,則表明IC罐的狀態在惡化,應盡快降低負荷并及時向上級匯報,做好記錄,必要時應通知協助解決。
c.沼帶水嚴重
l 適當減少廢糖水進水量,等待IC平穩后再調至原來的流量;
l 適當減少IC進水量,等待IC平穩后再調至原來的流量;
l 檢查沼管道是否堵塞。
d.管道堵塞
l IC罐分水包后的進水管道堵塞時,溫度會比其它正常進水管低,可適當關閉其它進水管,集中沖洗堵塞的管道。
回流管道堵塞時,可通過清洗閥門注入清水進行疏通,疏通回流管時應關閉沼管道的水封閥門。
3、UASB厭氧反應器的點
UASB內厭氧污泥濃,平均污泥濃度為20-40gMLVSS/L;
機負荷高,水力停留時間短,例如采用中溫發酵時,容積負荷一般為5-10kgCOD/(m3.d)左右;
混合攪拌設備,靠發酵過程中產生的沼的上升運動,使污泥床上部的污泥處于懸浮狀態,對下部的污泥層也一定程度的攪動;
污泥床不設載體,節省造價及避免因填料發生堵塞問題;
UASB內設三相分離器,通常不設強效澄清池,被沉淀區分離出來的污泥重新回到污泥床反應區內,通常可以不設污泥回流設備,動力較小。
利用機物厭氧分解過程中酸性發酵階段的點,將某些大分子的難降解機物轉化為易微生物降解的小分子機物,將大部分不溶性機物降解為溶解性物質,為后續好氧處理創造條件。
營養物質對厭氧生物處理的影響體現在哪些方面?
厭氧微生物的生長繁殖需要攝取一定比例的CNP及其他微量元素,但由于厭氧微生物對碳素養分的利用率比好氧微生物低,一般認為,厭氧法中碳氮磷的比值控制在CODcr:N:P=(200~300):5:1即可。還要根據具體情況,補充某些必需的殊營養元素,比如硫化物、鐵、鎳、鋅、鈷、鉬等。
在厭氧處理時提供氮源,除了滿足合成菌體之外,還利于提高反應器的緩沖能力。如果氮源不足,即碳氮比太高,不僅導致厭氧菌增殖緩慢,而且使消化液的緩沖能力降低,引起pH值下降。相反,如果氮源過剩,碳氮比太低、氮不能被充分利用,將導致系統中氮的積累,引起pH值上升;如果pH值上升到8以上,就會抑制產甲烷菌的生長繁殖,使消化效率降低。一般說來,氮的濃度必須保持在40~70mg/L的范圍內才能維持甲烷菌的活性。
pH值對厭氧處理的影響體現在哪些方面?
厭氧微生物對其活動范圍內的pH值一定的要求,產酸菌對pH值的適應范圍較廣,一般在4.5~8.0之間都能維持較高的活性。而甲烷菌對pH值較為敏感,適應范圍較窄,在6.6~7.4之間較為適宜,pH值為7.0~7.2。因此,在厭氧處理過程中,尤其是產酸和產甲烷在一個構筑物內進行時,通常要保持反應器內的pH值在6.5~7.2之間,保持在6.8~7.2的范圍內。
厭氧處理要求的pH值指的是反應器內混合液的pH值,而不是進水的pH值,因為生物化學過程和稀釋可以迅速改變進水的pH值。反應器出水的pH值一般等于或接近反應器內部的pH值。
使升流式厭氧反應器內出現顆粒污泥的方法哪幾種?
UASB反應器成功的關鍵是具顆粒污泥,使UASB反應器內出現顆粒污泥的方好以下三種:
⑴ 直接接種法:從正在的其它UASB反應器中取出一定量的顆粒污泥直接投入新的UASB反應器后,由少到多逐步加大處理的污水水量,直到設計水量。這種方法反應器投產所需時間較快,但一般只在啟動小型UASB反應器采用這種方法。
⑵ 間接接種法:將取自正在的厭氧處理裝置的厭氧活性污泥,如城市污水處理的消化污泥,投入UASB反應器后,創造厭氧微生物的生長條件,人工配制的、含適當營養成分的營養水進行培養,形成顆粒污泥后,再由少到多逐步加大被處理的污水水量,直到設計水量。
⑶ 直接培養法:將取自正在的厭氧處理裝置的厭氧活性污泥,如城市污水處理的消化污泥,投入UASB反應器后,用被處理污水直接培養,形成顆粒污泥后,再逐步加大被處理的污水水量,直到設計水量。這種方法反應器投產所需時間較多,可長達3~4個月,大型UASB反應器常采用這種方法。
明基設備有限公司多年來一直堅持“客戶*”的經營理念,用心做事,保護環境。在此,我們鄭重承諾:1、工程竣工后我方對用戶的操作人員進行技術培訓,包含污水處理系統工作原理、工藝流程、日常操作規程、常見故障查等2、污水處理工程竣工后我方為設備正常提供一年期3、在期內,在污水處理站操作管理人員不能除故障情況下,在接到用戶故障通知后,我會在2小時內給出應急方案,省內24小時(省外48小時)內人員抵達現場對故障進行處理。