![]() |
山東明基環保設備有限公司
主營產品: 地埋一體化污水處理設備溶氣氣浮機一體化凈水設備加藥裝置二氧化氯發生器板框壓濾機厭氧反應器 |

聯系電話
15963635951
公司信息
- 聯系人:
- 楊經理
- 電話:
- 86-0536-8120588
- 手機:
- 15963635951
- 傳真:
- 86-0536-8120588
- 地址:
- 山東省濰坊市奎文區幸福街316號1號樓3-401(住宅作為住所)
- 郵編:
- 網址:
- www.sdmjhb.com
參考價 | 面議 |
- 型號
- 品牌 明基環保
- 廠商性質 生產商
- 所在地 濰坊市
更新時間:2021-03-25 13:58:27瀏覽次數:291
聯系我們時請說明是環保在線上看到的信息,謝謝!
德陽UASB厭氧反應器
厭氧生物處理的影響因素哪些?
⑴ 溫度。存在兩個不同的溫度范圍(55℃左右,35℃左右)。通常所稱高溫厭氧消化和低溫厭氧消化即對應這兩個溫度范圍。
⑵ pH值。厭氧消化pH值范圍為6.8~7.2
⑶ 機負荷。由于厭氧生物處理幾乎對污水中的所機物都降解,因此討論厭氧生物處理時,一般都以CODcr來分析研究,而不象好氧生物處理那樣必須以BOD5為依據。厭氧處理的機負荷通常以容積負荷和一定的CODcr去除率來表示。
⑷ 營養物質。厭氧法中碳氮磷的比值控制在CODcr:N:P=(200~300):5:1即可。甲烷菌對硫化氫的需要量為11.5mg/L。時需補充某些必需的殊營養元素,甲烷菌對硫化物和磷專性需要,而鐵、鎳、鋅、鈷、鉬等對甲烷菌激活。
⑸ 氧化還原電位。氧化還原電位可以表示水中的含氧濃度,非甲烷厭氧微生物可以在氧化還原電位小于+100mV的環境下生存,而適合產甲烷菌活動的氧化還原電位要低于-150mV,在培養甲烷菌的初期,氧化還原電位要不高于-330mV。
⑹ 堿度。廢水的碳酸氫鹽所形成的堿度對pH值的變化緩沖,如果堿度不足,就需要投加碳酸氫鈉和石灰等堿劑來反應器內的堿度適中。
⑺ 毒物質。
⑻ 水力停留時間。水力停留時間對于厭氧工藝的影響主要是通過上流速度來表現出來的。一方面,較高的水流速度可以提高污水系統內進水區的擾動性,從而增加生物污泥與進水機物之間的接觸,提高機物的去除率。另一方面,為了維持系統中能擁足夠多的污泥,上流速度又不能過一定限值。
工藝中的兩級與兩相
*,不同的水質決定不同的工藝。產甲烷是厭氧去除水中機物的關鍵因素,兩級和兩相的差別也就在*個厭氧反應器是否產甲烷上;如果*個產甲烷,二個機負荷勢必要小很多,這是問題的關鍵。
一般來說,兩級厭氧適應的水質是較高濃度的廢水,它的生化性并不很差,*級通過沉降和發酵產降低二級的負荷。兩相厭氧,一是主要針對難生化降解廢水,靠*相改善生化性,二是針對硫酸鹽廢水,靠*相進行硫酸鹽還原,然后去除硫化物再進二相產甲烷,三是針對易酸化廢水易波動廢水,放在前面*酸化掉以穩定pH。
如酒精項目常用兩級,那些幾以上的,如果生化性不差并且水量不小,個人建議也用兩級,但是控制其實并不簡單,尤其是*級在高濃度、高VFA下。生化性較差用兩相的就很多了,其實生化性不差的也常常用兩相。
的工藝是用水解酸化+氧化(處理COD較低的廢水),的是UASB+氧化(一相厭氧,處理COD高的廢水),的是水解酸化+UASB+氧化(就相當于兩相厭氧);對此分析如下:
1)水解+好氧工藝,處理的廢水濃度確實常見的要低一些,因為水解并不能提供較力的COD消解能力,當然這個工藝相比較直接好氧而言,更多的可以用在進水COD1k-2k之間的項目,這種水質進厭氧節約的曝能耗和提升水用的動力能耗差不多,厭氧降解程度上優點也不明顯,但是直接進好氧濃度又偏高。因此常搞出水解+好氧,利用水解過程微量講解和吸附去除COD來減少好氧的負擔。當然這是在不討論改善生化性方面的前提下。
2)假如水解酸化+UASB+氧化就相當于兩相厭氧,文章說“厭氧發酵產生沼過程可分為水解階段、酸化階段、乙酸化階段和甲烷階段等四個階段。水解池(水解池進行的就是水解酸化反應吧)是把反應控制在二階段完成之前,不進入三階段。”
那么水解酸化產生的應該是機酸吧,那乙酸化階段在哪發生的?兩相厭氧的產酸相產的酸?它的乙酸化階段又是在哪發生的呢?
產乙酸這個詞和產乙酸階段是應該分開的,因為在產酸階段就會產生一部分乙酸了但并不一定作為過程的主體,這要看廢水的機物組成。產乙酸階段,這里面包含了兩類反應,一是更長碳鏈的VFA以及乳酸、丙酮酸和醇類等分解產生乙酸,二是同型產乙酸菌,利用CO2和H2的機組合進行產乙酸。兩相的水解酸化過程中產生的機酸,可能是甲酸、乙酸、丙酸、丁酸…以及乳酸中的任一種,也可能是未完降解的長鏈脂肪酸。
個人認為在實際工程中,兩相的分界線并不*分明,水解酸化相先后延伸至產乙酸甚至少量產甲烷都是經常遇見的。至于產甲烷相,它就沒不含水解酸化這兩個過程的時候,產甲烷相四個過程都會存在,只不過前兩個過程被之前的相分擔了一部分。乙酸化發生在哪里,這個過程應該大部分在后一相,兩相的定義并不是“水解酸化階段+乙酸化產甲烷階段”,只要在流程上將其主體分開即可叫做兩相,至于分界線模糊,沒關系。
基于水解和酸化兩個過程法分開的事實,三相取決于產乙酸和產甲烷是否可以分開。
對于三相分離器的工作原理大致可表述為:液固三相在體擾動和液體升流的下從下方進入三相分離器;污泥(固)撞擊在三相分離器上,上面吸附的沼泡釋放出來;沼體被三角形集罩收集;脫離體的泥水(固液相)穿過三相分離器集罩之間的縫隙,到達沉淀區;污泥(固)在沒體擾動的條件下沉淀,落回三相分離器下方。核心是體被收集和污泥沉淀
德陽UASB厭氧反應器
厭氧生物處理的主要特點哪些?
⑴ 能耗較低:因為厭氧生物處理不需要供氧,能源消耗約為好氧活性污泥法的1/10,還能產生具較高熱值的甲烷(CH4)。每去除1gCODcr可以產生0.35規準升甲烷或0.7規準升沼。沼的熱值為22.7KJ/L,甲烷的熱值為39300KJ/m3,一般天然的熱值為34300KJ/m3 。
⑵ 污泥產量低:因為厭氧微生物的增殖速率比好氧微生物低得多,好氧生物處理系統每處理1kgCODcr產生的污泥量為0.25~0.6kg,而厭氧生物處理系統每處理1kgCODcr產生的污泥量只0.02~0.18kg。
⑶可對好氧生物處理系統不能降解的一些大分子機物進行*降解或部分降解。
⑷ 厭氧微生物對溫度、PH等環境因素的變化更為敏感,管理好厭氧生物處理系統的難度較大。
⑸ 水溫適應廣:好氧處理水溫在10~35℃之間,當高溫時就需采取降溫措施;而厭氧處理水溫適應,分低溫厭氧(10~30℃)、中溫厭氧(30~40℃)和高溫厭氧(50~60℃)。
厭氧生物處理的影響因素哪些?
⑴ 溫度。存在兩個不同的溫度范圍(55℃左右,35℃左右)。通常所稱高溫厭氧消化和低溫厭氧消化即對應這兩個溫度范圍。
⑵ pH值。厭氧消化pH值范圍為6.8~7.2
⑶ 機負荷。由于厭氧生物處理幾乎對污水中的所機物都降解,因此討論厭氧生物處理時,一般都以CODcr來分析研究,而不象好氧生物處理那樣必須以BOD5為依據。厭氧處理的機負荷通常以容積負荷和一定的CODcr去除率來表示。
⑷ 營養物質。厭氧法中碳氮磷的比值控制在CODcr:N:P=(200~300):5:1即可。甲烷菌對硫化氫的需要量為11.5mg/L。時需補充某些必需的殊營養元素,甲烷菌對硫化物和磷專性需要,而鐵、鎳、鋅、鈷、鉬等對甲烷菌激活。
⑸ 氧化還原電位。氧化還原電位可以表示水中的含氧濃度,非甲烷厭氧微生物可以在氧化還原電位小于+100mV的環境下生存,而適合產甲烷菌活動的氧化還原電位要低于-150mV,在培養甲烷菌的初期,氧化還原電位要不高于-330mV。
⑹ 堿度。廢水的碳酸氫鹽所形成的堿度對pH值的變化緩沖,如果堿度不足,就需要投加碳酸氫鈉和石灰等堿劑來反應器內的堿度適中。
⑺ 毒物質。
⑻ 水力停留時間。水力停留時間對于厭氧工藝的影響主要是通過上流速度來表現出來的。一方面,較高的水流速度可以提高污水系統內進水區的擾動性,從而增加生物污泥與進水機物之間的接觸,提高機物的去除率。另一方面,為了維持系統中能擁足夠多的污泥,上流速度又不能過一定限值。
營養物質對厭氧生物處理的影響體現在哪些方面?
厭氧微生物的生長繁殖需要攝取一定比例的CNP及其他微量元素,但由于厭氧微生物對碳素養分的利用率比好氧微生物低,一般認為,厭氧法中碳氮磷的比值控制在CODcr:N:P=(200~300):5:1即可。還要根據具體情況,補充某些必需的殊營養元素,比如硫化物、鐵、鎳、鋅、鈷、鉬等。在厭氧處理時提供氮源,除了滿足合成菌體之外,還利于提高反應器的緩沖能力。如果氮源不足,即碳氮比太高,不僅導致厭氧菌增殖緩慢,而且使消化液的緩沖能力降低,引起pH值下降。相反,如果氮源過剩,碳氮比太低、氮不能被充分利用,將導致系統中氮的積累,引起pH值上升;如果pH值上升到8以上,就會抑制產甲烷菌的生長繁殖,使消化效率降低。一般說來,氮的濃度必須保持在40~70mg/L的范圍內才能維持甲烷菌的活性。
UASB厭氧反應器優點:
廢水厭氧生物技術由于其巨大的處理能力和潛在的空間,一直是水處理技術研究的熱點。從傳統的厭氧接觸工藝發展到現今流行的UASB工藝,廢水厭氧處理技術已日趨成熟。隨著發展與資源、能耗、占地等因素間矛盾的進一步突出,現的厭氧工藝又面臨著嚴峻的挑戰,尤其是如何處理發展帶來的大量高濃度機廢水,使得研發技術更優化的厭氧工藝非常必要。內循環厭氧處理技術(以下簡稱IC厭氧技術)就是在這一背景下產生的強效處理技術,它是20世紀80年代中期由荷蘭PAQUES研發成功,并推入廢水處理工程市場,目前已成功于土豆加工、啤酒、食品和檸檬酸等廢水處理中。實踐證明,該技術去除機物的能力遠遠過普通厭氧處理技術(如UASB),而且IC反應器容積小、投資少、、,是一種值得推廣的強效厭氧處理技術。
升流式厭氧污泥床(Upflow Anaerobic Sludge Bed,簡稱UASB),是由荷蘭的Lettinga教授等在20世紀70年 代時開發的強效厭氧生物反應器,其結構如左圖 所示。反應器工作時,污水經過均勻布水 進人反應器底部,污水自下而上地通過厭氧污泥床反應器。
UASB厭氧反應器三個重要的前提:
- 應器內形成沉降性能良好的顆粒污泥或絮狀污泥;
② 產和進水的均勻分布所形成的良好的自然攪拌;
③ 設計的三相分離器,能使沉淀性能良好的污泥保留在反應器內。良好的顆粒污泥床的形成,使得機負荷和去除率髙,不需要攪拌,能適應負荷沖擊和溫度與pH值的變化。
UASB厭氧反應器具如下的主要特點:
① 污泥的顆粒化使反應器內的平均濃度達50 gVSS/L以上,污泥齡一般為30天以上;
② 反應器的水力停留吋間相應較短;
③ 反應器具很髙的容積負荷;
④ 不僅適合于處理髙、中濃度的機工業廢水,也適合于處理低濃度的城市污水;
⑤ UASB厭氧反應器集生物反應和沉淀分離于一體,;
⑥ 滯設置填料,節省了,提髙了容積利用率;
⑦ 一般也需設置攪拌設備,上升水流和沼產生的上升流起到攪拌;
⑧ 構造簡單,方便。
基本要求:
(1)為污泥絮凝提供利的物理、化學和力學條件,使厭氧污泥獲得并保持良好的沉淀性能;
(2)良好的污泥床常可形成一種相當穩定的生物相,保持定的微生態環境,能抵抗較強的擾動力,較大的絮體具良好的沉淀性能,從而提高設備內的污泥濃度;
(3)通過在污泥床設備內設置一個沉淀區,使污泥細顆粒在沉淀區的污泥層內進一步絮凝和沉淀,然后回流入污泥床內。
UASB內的流態和污泥分布
UASB內的流態相當復雜,反應區內的流態與產量和反應區高度相關,一般來說,反應區下部污泥層內,由于產的結果,部分斷面通過的量較多,形成一股上升的流,帶動部分混合液(指污泥與水)作向上運動。與此同時,這股、水流周圍的介質則向下運動,造成逆向混合,這種流態造成水的短流。在遠離這股上升、水流的地方容易形成死角。在這些死角處也具一定的產量,形成污泥和水的緩慢而微弱的混合,所以說在污泥層內形成不同程度的混合區,這些混合區的大小與短流程度關。懸浮層內混合液,由于體幣的運動帶動液體以較高速度上升和下降,形成較強的混合。在產量較少的情況下,時污泥層與懸浮層明顯的界線,而在產量較多的情況下,這個界面不明顯。關試驗表明,在沉淀區內水流呈推流式,但沉淀區仍然還死區和混合區。
UASB內污泥濃度與設備的機負荷率關。是處理制糖廢水試驗時,UASB內污泥分布與負荷的關系。從圖中可看出污泥層污泥濃度比懸浮層污泥濃,懸浮層的上下部分污泥濃度差較小,說明接近完混合型流態,反應區內污泥的頒,當機負荷很高時污泥層和懸浮層分界不明顯。試驗表明,污水通過底部0.4-0.6m的高度,已90%的機物被轉化。由此可見厭氧污泥具高的活性,改變了以來認為厭氧處理過程進行緩慢的概念。在厭氧污泥中,積累大量高活性的厭氧污泥是這種設備具巨大處理能力的主要原因,而這又歸于污泥具良好的沉淀性能。
UASB具高的容積機負荷率,其主要原因是設備內,別是污泥層內保大量的厭氧污泥。工藝的穩定性和強效性很大程度上取決于生成具優良沉降性能和很高甲烷活性的污泥,尤其是顆粒狀污泥。與此相反,如果反應區內的污泥以松散的絮凝狀體存在,往往出現污泥上浮流失,使UASB不能在較高的負荷下穩定。
根據UASB內污泥形成的形態和達到的COD容積負荷,可以將污泥顆粒化過程大致分為三個期:
(1)接種啟動期:從接種污泥開始到污泥床內的COD容積負荷達到5kgCOD/m3.d左右,此期污泥沉降性能一般;
(2)顆粒污泥形成期:這一期的點是小顆粒污泥開始出現,當污泥床內的總SS量和總VSS量降至時本期即告結束,這一期污泥沉降性能不太好;
(3)顆粒污泥成熟期:這一期的點是顆粒污泥大量形成,由下為上逐步充滿整個UASB。當污泥床容積負荷達到16kgCOD/m3.d以上時,可以認為顆粒污泥已培養成熟。該期污泥沉降性很好。
明基設備有限公司多年來一直堅持“客戶*”的經營理念,用心做事,保護環境。在此,我們鄭重承諾:1、工程竣工后我方對用戶的操作人員進行技術培訓,包含污水處理系統工作原理、工藝流程、日常操作規程、常見故障查等2、污水處理工程竣工后我方為設備正常提供一年期3、在期內,在污水處理站操作管理人員不能除故障情況下,在接到用戶故障通知后,我會在2小時內給出應急方案,省內24小時(省外48小時)內人員抵達現場對故障進行處理。