![]() |
山東明基環保設備有限公司
主營產品: 地埋一體化污水處理設備溶氣氣浮機一體化凈水設備加藥裝置二氧化氯發生器板框壓濾機厭氧反應器 |

聯系電話
15963635951
公司信息
- 聯系人:
- 楊經理
- 電話:
- 86-0536-8120588
- 手機:
- 15963635951
- 傳真:
- 86-0536-8120588
- 地址:
- 山東省濰坊市奎文區幸福街316號1號樓3-401(住宅作為住所)
- 郵編:
- 網址:
- www.sdmjhb.com
參考價 | 面議 |
- 型號
- 品牌 明基環保
- 廠商性質 生產商
- 所在地 濰坊市
更新時間:2020-01-07 13:26:37瀏覽次數:380
聯系我們時請說明是環保在線上看到的信息,謝謝!
益陽市IC厭氧反應器工藝
優點
IC 反應器的構造及其工作原理決定了其在控制厭氧處理影響因素方面比其它反應器更具優點。
(1)容積負荷高:IC反應器內污泥濃,微生物量大,且存在內循環,傳質效
好,進水機負荷可過普通厭氧反應器的3倍以上。
(2)節省投資和占地面積:IC 反應器容積負荷率高出普通UASB 反應器3倍左右,其體積相當于普通反應器的1/4—1/3 左右,大大降低了反應器的基建投資;而且IC反應器高徑比很大(一般為4—8),所以占地面積少。
(3)抗沖擊負荷:處理低濃度廢水(COD=2000—3000mg/L)時,反應器內循環流量可達進水量的2—3 倍;處理高濃度廢水(COD=10000—15000mg/L)時,內循環流量可達進水量的10—20倍。大量的循環水和進水充分混合,使原水中的害物質得到充分稀釋,大大降低了毒物對厭氧消化過程的影響。
(4)抗低溫:溫度對厭氧消化的影響主要是對消化速率的影響。IC反應器由于含大量的微生物,溫度對厭氧消化的影響變得不再突出和嚴重。通常IC反應器厭氧消化可在常溫條件(20—25 ℃)下進行,這樣減少了消化保溫的困難,節省了能量。
(5)具緩沖pH值的能力:內循環流量相當于1 厭氧區的出水回流,可利用COD轉化的堿度,對pH值起緩沖,使反應器內pH值保持好的狀態,同時還可減少進水的投堿量。
(6)內部自動循環,不必外加動力:普通厭氧反應器的回流是通過外部加壓實現的,而IC 反應器以自身產生的沼作為提升的動力來實現混合液內循環,不必設泵強制循環,節省了動力消耗。
(7)性好:利用二級UASB串聯分級厭氧處理,可以補償厭氧過程中K s高產生的不利影響。Van Lier在1994年證明,反應器分級會降低出水VFA濃度,延長生物停留時間,使反應進行穩定。
(8)啟動周期短:IC反應器內污泥活性高,生物增殖快,為反應器快速啟動提供利條件。IC反應器啟動周期一般為1~2個月,而普通UASB啟動周期長達4~6個月。
(9)沼利用價值高:反應器產生的生物純,CH4為70%~80%,CO2為20%~30%,其它機物為1%~5%,可作為燃料加以利用
按功能劃分,反應器由下而上共分為5個區:混合區、1厭氧區、2厭氧區、沉淀區和液分離區。
- 混合區:反應器底部進水、顆粒污泥和液分離區回流的泥水混合物效地在此區混合。
- 1厭氧區:混合區形成的泥水混合物進入該區,在高濃度污泥下,大部分機物轉化為沼?;旌弦荷仙骱驼拥膭×覕_動使該反應區內污泥呈膨脹和流化狀態,加強了泥水表面接觸,污泥由此而保持著高的活性。隨著沼產量的增多,一部分泥水混合物被沼提升至部的液分離區。
- 液分離區:被提升的混合物中的沼在此與泥水分離并導出處理系統,泥水混合物則沿著回流管返回到下端的混合區,與反應器底部的污泥和進水充分混合,實現了混合液的內部循環。
- 2厭氧區:經1厭氧區處理后的廢水,除一部分被沼提升外,其余的都通過三相分離器進入2厭氧區。該區污泥濃度較低,且廢水中大部分機物已在1厭氧區被降解,因此沼產生量較少。沼通過沼管導入液分離區,對2厭氧區的擾動很小,這為污泥的停留提供了利條件。
- 沉淀區:2厭氧區的泥水混合物在沉淀區進行固液分離,上清液由出水管走,沉淀的顆粒污泥返回2厭氧區污泥床。?
IC厭氧反應器是強效厭氧反應器,即內循環厭氧反應器,相似由2層UASB反應器串聯而成,用于機高濃度廢水,如,玉米淀粉廢水、檸檬酸廢水、啤酒廢水、土豆加工廢水、酒精廢水。IC 反應器當前在造紙行業較多的是用各類廢紙作原料的造紙企業,處理的包括實現一般的達標放,通過治理后的,從而達到節水和治污的雙重。
IC厭氧反應器水封罐主要由杯形罐體和進、出水口組成,其征在于 園底杯形罐的罐壁上部設相對的進、出水口,其進水口的水 平位置略高于出水口;進水口處裝活動式閥板,該閥板與進 水口的接觸面上設密封墊;下端為弧形的隔板從罐蓋的 扁孔垂直插入罐內至下部。IC厭氧反應器的水封罐可以隔絕空,可以維持厭氧反應器的壓力,可以起阻火器的,還可以一定的沼凈化效果。
IC厭氧反應器水封罐工作原理如下:密閉罐中原油沉降分離后的含硫化氫天然通過水封罐管道進入水封罐的底部,通過底部篩管分散流后進入水域空間,含硫化氫天然從水域底部上升后聚集在水封罐的液體上部空間,當體不斷由液體中分離出來,在上部空間聚集形成一定壓力后,由水封罐部出口管線出燃燒。當發生回火時,水域成為含硫化氫天然流程的隔斷部分,能夠效的保護罐,同時天然通過水域空間時,一部分凝液被降溫分離,在水域上部形成凝析液層,減緩了阻火器的堵塞情況。隨著對的日益重視,在廢水末端處理方面也進行了大量的資金投入,如在造紙二部和板紙廢水厭氧處理技術的足以證明。廢水的厭氧處理技術以其低、、污泥易于處理等優點在廢水處理中正發揮著越來越大的。
發展歷程
在相當長的一段時間內,厭氧消化在理論、技術和上遠遠落后于好氧生物處理的發展。20世紀60年代以來,能源短缺問題日益突出,這促使人們對厭氧消化工藝進行重新認識,對處理工藝和反應器結構的設計以及甲烷回收進行了大量研究,使得厭氧消化技術的理論和實踐都了很大進步,并得到。厭氧消化具下列優點:需攪拌和供氧,動力消耗少;能產生大量含甲烷的沼,是很好的能源物質,可用于發電和家庭燃;可高濃度進水,保持高污泥濃度,所以其溶劑機負荷達到規準仍需要進一步處理;初次啟動時間長;對溫度要求較高;對毒物影響較敏感;遭破壞后,恢復期較長。污水厭氧生物處理工藝按微生物的凝聚形態可分為厭氧活性污泥法和厭氧生物膜法。厭氧活性污泥法包括普通消化池、厭氧接觸消化池、升流式厭氧污泥床(upflow anaerobic sludge blanket,UASB)、厭氧顆粒污泥膨脹床(EGSB)等;厭氧生物膜法包括厭氧生物濾池、厭氧流化床和厭氧生物轉盤。
原理
在厭氧處理過程中,廢水中的機物經大量微生物的共同,被終轉化為甲烷、二氧化碳、水、硫化氫和氨等。在此過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。對高分子機物的厭氧過程的敘述,助于我們了解這一過程的基本內容。高分子機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
水解階段
水解可定義為復雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。
高分子機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。它們在*階段被細菌胞外酶分解為小分子。例如:纖維素被纖維素酶水解為纖維二糖與葡萄糖,淀粉被分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解于水并透過細胞膜為細菌所利用。水解過程通常較緩慢,因此被認為是含高分子機物或懸浮物廢液厭氧降解的限速階段。多種因素如溫度、機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。水解速度的可由以下動力學方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物濃度(g/L)
ρo———非溶解性底物的初始濃度(g/L)
Kh——水解常數(d^-1)
T——停留時間(d)
發酵或酸化階段
發酵可定義為機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
在這一階段,上述小分子的化合物發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物并分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常約1%的兼性厭氧菌存在于厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物揮發性脂肪酸、醇類、乳酸、二氧化碳、氫、氨、硫化氫等,產物的組成取決于厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩余污泥。
益陽市IC厭氧反應器工藝
在厭氧降解過程中,酸化細菌對酸的耐受力必須加以考慮。酸化過程pH下降到4時能可以進行。但是產甲烷過程pH值的范圍在6.5~7.5之間,因此pH值的下降將會減少甲烷的生成和氫的消耗,并進一步引起酸化末端產物組成的改變。
產乙酸階段
在產氫產乙酸菌的下,上一階段的產物被進一步轉化為乙酸、氫、碳酸以及新的細胞物質。
其某些反應式如下:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG’0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG’0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG’0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG’0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG’0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG’0=-70.3KJ/MOL
甲烷階段
這一階段,乙酸、氫、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。甲烷細菌將乙酸、乙酸鹽、二氧化碳和氫等轉化為甲烷的過程兩種不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,后者約占2/3。
主要的產甲烷過程反應:
CH3COO-+H2O->CH4+HCO3- ΔG’0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG’0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG’0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG’0=-32.9KJ/MOL
在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。
新法的實施,新要求的實行,友情建議您山東明基設備有限公司的地埋一體化污水處理設備,以上好的產品、完善的,精益求精、開拓進取的務實精神于廣大用戶,我們愿意真誠對待每一用戶。明基以促進水處理行業的發展,,努力為廣大用戶奉獻技術、質量過硬的產品和至誠至信的,在充滿機遇與挑戰的。水處理行業,明基將以科技創新為動力,以創建*的企業為目標,為我的水處理行業貢獻自己的力量!