![]() |
山東明基環保設備有限公司
主營產品: 地埋一體化污水處理設備溶氣氣浮機一體化凈水設備加藥裝置二氧化氯發生器板框壓濾機厭氧反應器 |

聯系電話
15963635951
公司信息
- 聯系人:
- 楊經理
- 電話:
- 86-0536-8120588
- 手機:
- 15963635951
- 傳真:
- 86-0536-8120588
- 地址:
- 山東省濰坊市奎文區幸福街316號1號樓3-401(住宅作為住所)
- 郵編:
- 網址:
- www.sdmjhb.com
參考價 | 面議 |
- 型號
- 品牌 明基環保
- 廠商性質 生產商
- 所在地 濰坊市
更新時間:2025-05-05 12:44:17瀏覽次數:269
聯系我們時請說明是環保在線上看到的信息,謝謝!
始終秉承誠信、創新、強效、務實的精神,從客戶的角度出發,以勤勉的工作態度,為客戶提供污水治理領域的技術、的和zui完善的解決方案
寧市IC厭氧反應器
厭氧反應器的幾類常見抑制劑。
1、氨氮。
高濃度下,高pH下,直接抑制。一般來說,500ppm以下是沒問題的,500-1000ppm,顆粒污泥,上幾個月看起來問題也不大,但是不下來不需要更換污泥,1000ppm以上,考慮放棄。氨氮個附加問題,就是同時存在P和Mg時,容生鳥糞石結垢,這時IC比UASB優點,基本上只會在出水管緩慢結垢,而不是整個厭氧反應器內
2、VFA。
高濃度下,低pH下,直接抑制。當然,VFA積累,本身也會促使pH下降,這就容易產生一個惡性循環,所以厭氧反應器系統檢測出水VFA是很必要的,一旦VFA出現不正常,而又沒采取效的措施去控制,很可能一酸到底。不過,過分的強調VFA的抑制性就偏激了,VFA中的乙酸,可是直接產甲烷的底物。
3、硫酸鹽。
硫酸鹽本身沒什么,除非上的濃度影響了滲透壓。但是SRB(硫酸鹽還原菌)這種細菌搞破壞,它把硫酸根轉化為H2S,還消耗產甲烷菌的碳源底物。一般來說,COD在5000mg/L,硫酸鹽在1500mg/L,顆粒污泥沒問題。很多水友說碳硫比在某個數值合適,其實這樣做出來的厭氧實際會出麻煩。因為碳硫比合適只是了產甲烷可以正常進行,不至于被性抑制。但是高的硫酸鹽含量下,還原形成的H2S濃度也會更高,當然,H2S在低pH下毒性更強大。
個人認為在實際工程中,兩相的分界線并不*分明,水解酸化相先后延伸至產乙酸甚至少量產甲烷都是經常遇見的。至于產甲烷相,它就沒不含水解酸化這兩個過程的時候,產甲烷相四個過程都會存在,只不過前兩個過程被之前的相分擔了一部分。乙酸化發生在哪里,這個過程應該大部分在后一相,兩相的定義并不是“水解酸化階段+乙酸化產甲烷階段”,只要在流程上將其主體分開即可叫做兩相,至于分界線模糊,沒關系。基于水解和酸化兩個過程法分開的事實,三相取決于產乙酸和產甲烷是否可以分開。
對于三相分離器的工作原理大致可表述為:液固三相在體擾動和液體升流的下從下方進入三相分離器;污泥(固)撞擊在三相分離器上,上面吸附的沼泡釋放出來;沼體被三角形集罩收集;脫離體的泥水(固液相)穿過三相分離器集罩之間的縫隙,到達沉淀區;污泥(固)在沒體擾動的條件下沉淀,落回三相分離器下方。核心是體被收集和污泥沉淀
原理
在厭氧處理過程中,廢水中的機物經大量微生物的共同,被終轉化為甲烷、二氧化碳、水、硫化氫和氨等。在此過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。對高分子機物的厭氧過程的敘述,助于我們了解這一過程的基本內容。高分子機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
IC 反應器構造原理圖
1.液分離器2.集管3.二級三相分離器4.沼提升管5.
論內循環(IC)厭氧反應器的設計工藝思想
一級三相分離器6.泥水下降管7.進水8.出水區9.精處理區10.
顆粒污泥膨脹床區11.混合區
沼泡在形成過程中會對液體做膨脹功產生提,使
得沼、污泥和水的混合液沿沼提升管上升至反應器部的
液分離器。沼與泥水分離被導出處理系統,泥水混合物沿著泥
水下降管進入反應器底部的污泥膨脹床區,形成內循環系統。經
顆粒污泥膨脹床區處理后的污水一部分參與內循環,另一部分進
入精處理區進行剩余COD 的降解,提高并了出水水質。由于
大部分COD 已被降解,所以精處理區的COD負荷較低, 產量也
小。產生的沼由二級三相分離器收集,通過集管進入液分
離器被導出處理系統。泥水經二級三相分離器后,上清液由
出水區走,顆粒污泥返回精處理區。
由IC反應器構造原理進水
(1)用泵由反應器底部進入*反應室,與該室內的厭氧顆粒污泥均勻混合。廢水中的大部分機物在這里被轉化為沼,所產生的沼被*厭氧反應室的集罩
(2)收集,沼將沿著提升管
(3)上升。沼上升的同時,把*反應室的混合液提升至設在反應器部上的液分離器
(4)被分離出的沼由液分離器部的沼管
(5)走。分離出的泥水混合液將沿著回流管
(6)回到*反應室的底部,并于底部的顆粒污泥進行充分混合,實現了*反應室混合液的內部循環。
(7)收集,通過集管
(8)進入液分離器二反應室的泥水混合液進入沉淀區
(9)進行固液分離,處理過的上清液由出水管
(10)走,沉淀下來的污泥自動返回二反應室。這樣,廢水就完成了在IC反應器內處理的過程。
寧市IC厭氧反應器
啟動的要點
①啟動一定要逐步進行,留充裕的時間,并不能期望很短時間進入加料達到厭氧降解的目標 。因為啟動實際上是使菌從休眠狀態恢復,即活化的過程。啟動中菌、馴化、增殖過程都在進行,原厭氧污泥中濃度較低的甲烷菌的增長速度相對于產酸菌要慢的多。因此,這時負荷一般不能高,時間不能短,每次進料要少,間隔時間要長。
②混合進液濃度一定要控制在較低水平,一般COD濃度為1000-5000mg/L,當過5000mg/L,應進行出水循環和加水稀釋至要求。
③若混合液中亞硫酸鹽濃度大于200mg/L時,則亦應稀釋至100mg/L以下才能進液。
④負荷增加操作方式:啟動初期容積負荷可從0.2-0.5kgCOD/m3?d開始,當生物降解能力達到80%以上時,再逐步加大。若低負荷進料,厭氧過程仍不正常COD不能消化,則進料間斷時間應延長24h或2-3d,檢查消化降解的主要指標測量VFA濃度,啟動階段VFA應保持在3mmoL/L以下。
⑤當容積負荷走到2.0kgCOD/m3?d后,每次進料負荷可增大,但不過20%,只當進料增大,而VFA濃度且維持不變,或仍維持在﹤3mmoL/L水平時,進料量才能不斷增大進液間隔才能不斷減少。
IC厭氧反應器是繼UASB、EGSB之后的一種厭氧反應器。它通過上下兩層集罩把反應器分為上下兩個室,兩個室通過內循環裝置組合在一起。
進入IC厭氧反器的機物大部分在下反應室被消化,所產生的沼被下層集罩阻隔收集進入提升管,由于提升管內外液體存在密度差,促使發酵液不斷被提升至液分離器,分離沼后又回流到下反應室,形成了發酵液的連續循環。
鑒于內循環發生在下反應室,故下反應室較高的水力負荷,高水力負荷和高產負荷使污泥與機物充分混合,使污泥處于充分的膨脹狀態,傳質速率高,大大提高了厭氧消化速率和機負荷。
上反應室是反應器的低負荷區,它只是消化下反應室少量來不及消化的機物,沼產量少。產負荷低,內循環不進入上反應室,上反應室較低的產負荷和較低的水力負荷利于污泥的沉降和滯留,從而能維持反應器內較高的污泥濃度。
由于厭氧消化速率取決于污泥濃度和傳質速率,影響傳質的因素是產負荷和水力負荷,它們一方面是強化傳質的重要因素,又是造成污泥流失的根本原因,而IC厭氧應器由于了內循環裝置,改變了產負荷與水力負荷的方向,在高負荷下能避免污泥的流失,在一定程度上實現了“高負荷與污泥流失相分離”,從而使IC厭氧反器具比UASB、EGSB更高的機負荷
IC反應器從功能上講由四個不同的功能部分組成:
1、混合區:由反應器的底部進入的污水與顆粒污泥和內部體循環所帶回的出水效地混合,使進水得到效地稀釋和均化。
2、污泥膨脹床部分:由包含高濃度的顆粒污泥膨脹床所構成。床的膨脹或流化是由于進水的上升流速、回流和產生的沼所造成。廢水和污泥之間效地接觸使得污泥具高的活性,可獲得高的機負荷和。
3、精處理部分:在這一區域內,由于低的污泥負荷率,相對長的水力停留時間和推流的流態性,產生了效的后處理。另外由于沼產生的擾動在精處理部分較低,使得生物可降解COD幾乎部去除。雖然與UASB反應器條件相比,反應器的負荷率較高,但因內部循環流體不經過這一區域,因此在精處理區的上升流速也較低,這兩點為固體停留提供了條件。
4、回流系統:內部的回流是利用提原理,因為在上部和下層的室間存在著壓力差。回流的比例是由產其量所決定的。
多年來山東明基設備有限公司始終秉承“科技創造高”的企業理念、“觀念創新、產品創新、誠信”的經營理念。長年致力于水處理設備的開發、研制和,積累了豐富的水處理技術經驗,擁的加工設備,的檢測手段,完善的質保體系以及的。